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Abstract— Dexterous in-hand manipulation of objects bene-
�ts from the ability of a robot system to generate precision
grasps. In this paper, we propose a concept of Fingertip Space
and its use for precision grasp synthesis. Fingertip Space is a
representation that takes into account both the local geometry
of object surface as well as the �ngertip geometry. As such,
it is directly applicable to the object point cloud data and
it establishes a basis for the grasp search space. We propose
a model for a hierarchical encoding of the Fingertip Space
that enables multilevel re�nement for ef�cient grasp synthesis.
The proposed method works at the grasp contact level while
not neglecting object shape nor hand kinematics. Experimental
evaluation is performed for the Barrett hand considering also
noisy and incomplete point cloud data.

I. I NTRODUCTION AND CONTRIBUTIONS

Research in robotic grasping ranges from the sensory
perception problem [1]–[3] to task level grasp planning [4].
For applications such as dexterous in-hand manipulation,
precision grasping is a necessary requirement [5]–[9]. The
synthesis of precision grasps has been in particular addressed
in [10]–[14] but in a rather limited manner. In this paper, we
address the problem of generating precision grasps on objects
of complex shapes and propose the following:

� A concept ofFingertip Space– an integrated represen-
tation of object/�ngertip contacts space that takes into
consideration both local object geometry and �ngertip
shape. It directly operates on the object point cloud and
establishes a basis for the grasp search space.

� A hierarchy of theFingertip Spacefor multilevel re-
�nement of grasps allowing for an ef�cient search of
stable grasps.

Our work is motivated by the fact that most of the
contemporary object representation approaches concentrate
on the global rather than local surface properties and are
therefore not suitable for generating precision grasps. Exam-
ples include Reeb graph [15], Medial Axis [16], topological
features [17], primitive shapes [3], [18] and approximated
parametrized volumes [19]–[21]. Inspired by [22], which
has proven that nearby grasps with certain bounded contact
differences are also bounded in grasp quality, it enables us to
considerFingertip Unit, which preserves surface local infor-
mation, as the basis ofFingertip Space. On the other hand,
hierarchical representation of theFingertip Spaceprovides a
multi-resolution global view of the target object to facilitate
the grasp planning in an ef�cient way. In comparison with
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Fig. 1. System pipeline: Given an object point cloud and a robotic hand as
input, our system (A) extracts a �ngertip space directly from the object point
cloud and builds a hierarchical representation of it. (B) By incorporating
the �ngertip space hierarchy and a hand reachability measure, the multilevel
re�nement procedure searches for a feasible combination of contacts with an
initial hand con�guration. (C) In the end, the synthesized grasp is realized by
local contact positions optimization with respect to the synthesized contacts.

the widely used sampling based precision grasp planners
[11], [23], [24], our representation makes the grasp planning
more reliable on complex shapes. Moreover, reachability
is an important component ensuring that the synthesized
grasp is applicable [25], [26]. By sampling and encoding
feasible hand con�gurations, we approximate the reachability
manifold non-parametrically to produce reachable grasps.
Finally, the execution of the synthesized grasp is computed
similarly to [27].

The system pipeline is depicted in Fig. 1: we assume that
the friction coef�cients are known and that the center of mass
of the object is the centroid of its point cloud. The rest of
this paper is organized as follows: In Sec. II, we formulate
the problem of precision grasp synthesis in the context of our
system. In Sec. III, we introduce the extraction ofFingertip
Spaceand its hierarchy, which is shown as block (A) in
Fig. 1. Multilevel re�nement of grasps, shown as block (B),
is described in Sec. IV along withStochastic Hill Climbing.
In Sec. V, we describe details of our system implementation
and grasp execution (Block (C)) and present the experimental
evaluation. We conclude the work together and introduce
ideas for the future work in Sec. VI.
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Fig. 2. Formation of the �ngertip hierarchy exempli�ed for four levels.Left: An AHC clustering tree is used to retrieve a partitioning of
the �ngertip space intoj� j, 10, 3, and1 cells. For each cell a circle symbolizes the representative �ngertip unit.Right: The representative
units are used as parents in a DAG. Edges to siblings (in red) and to cousins (in blue) are only shown for the �ngertip unit� 1 = � 0;1 .

II. PROBLEM FORMULATION AND NOTATION

We begin by presenting the notation in the table below
and then continue with the formalization of the problem.

ng Number of �ngers of a robot hand
L Set of all contact locations
g =
(Cg; Joint g; Poseg)

Fingertip grasp with contactsCg,
joint values Joint g and hand pose
Poseg

� = f � i gi Fingertip Space of �ngertip units� i

d� : � � � ! R Distance measure on �ngertip units

�� = � _[f � i;j gi;j
Fingertip Space with additional rep-
resentative parents� i;j

G� Fingertip Hierarchy graph
(G� ) i i th hierarchy level induced byG�

S Fingertip grasp solution space
Si i th hierarchy level solution space
Q: Cg ! R Grasp quality function
R : Cg ! R+ Reachability function
P = f (pi ; ni )gi Point cloud with unit length normals
N r

pi
Point neighborhood within radiusr

H zi
k � �

Cell k of a zi -element partitioning
of �

cM = f mĝgĝ

Sampled reachability manifold of
sampled graspŝg

For synthesizing precision grasps, which we refer to as
�ngertip grasps in this work, we next introduce how to
construct a representation that hierarchically integrates global
and local features of the object and �ngertips based on the
Fingertip Space. Starting from the top level of the hierarchy,
our system starts from an initial grasping pose and then
optimizes the contacts through the hierarchy in a coarse-to-
�ne manner to �nally produce a stable and reachable �ngertip
grasp.

A. Fingertip Grasps

We consider �ngertip grasps for a hand withng �ngers,
formalized as the tupleg = ( Cg; Joint g; Poseg). We refer to
contacts between the robot �ngertips and the object asCg =

f ci g
n g
i =1 , the values for the end effector joints asJoint g, and

the position and orientation of the hand asP oseg. A �ngertip
grasp provides one individual contact,ci , for each �ngertip
which means that for each �nger there exists one location
l i 2 L on the object that is in contact with the �ngertip. If
no value forJoint g exists ensuring that the �ngertips can
exert force onto the object via the individual contacts,Cg is
considerednot reachable.

B. Fingertip Space

The set of potential contact locations,L , is large but many
locations are not viable due to the local surface geometry. To
keep grasp synthesis tractable, we propose a �nite discrete
set of locations on the object,� = f � i gi that consists of
only viable locations and denote it asFingertip Space. The
elements,� i of this space are namedFingertip Units. Thus,
viable grasp locations take into account local object surface
and�ngertip geometry. Sec. III provides more details on this.

Provided a similarity measure for �ngertip units, it is
possible to assign structure to the space� � �� in form
of a directed acyclic graphG� =

� �� ; E ��

�
. We de�ne G�

such that similar �ngertip units are pairwise connected by
edges and introduce new parent units as representatives of all
their descendants in� . The set�� = � _[

�
� i;j

	
i;j consists of

�ngertip units and introduced ancestor units. The symbol� i;j

with i > 0 denotes thej th parent unit in thei th level of the
hierarchy, representing all �ngertip units that are commonly
represented by its children in the(i � 1)th level. As shown in
Fig. 2 on the right, the resulting hierarchy of �ngertip space
has a single root and similar �ngertip units are connected. In
the graph, we refer to members of� as elements� 0;j and
denote with(G� ) i =

S
j � i;j the i th hierarchy level induced

by G� , e.g. especially we have(G� )0 = � . Connected nodes
from the same level are neighbors, and connecting pairs of
parent units can be exploited (see Sec. III-B).

The graphG� and the induced hierarchy levels(G� ) i
form our object representation. For �ngertip grasp synthesis,
the above de�nitions ef�ciently provide relevant information
by adding an explicit similarity-based structure to the �n-
gertip units space:i) Similar units are directly connected.



ii) Dissimilar units are found by considering the units rep-
resented by dissimilar distant ancestors.iii) An increasingly
coarser representation is found by considering the members
or levels further up in the hierarchy.iv) Similar �ngertip units
are collected under a common parent.

C. Fingertip Grasp Selection by Optimization

To synthesize a feasible �ngertip grasp on an object, it
is necessary to select locations fromL that afford stable
contacts and ensure reachability. We �rst search for stable
and reachable contacts and after that check if there are
solutions forJoint g and Poseg that realize the grasp. By
approximating the set of all possible contacts with� as
described in Sec. II-B, we can formalize the contacts asCg =�
� 1; � 2; : : : ; � n g

�
2 S . Thereby, we denoteS =

Q n g

k=1 � k as
the solution space consisting of �ngertip spaces of different
robot �ngers � k . All surface locations that do not support
the placement of a speci�c �ngertip are disregarded.

Given a measure of grasp quality in terms of �ngertip units
Q

�
Cg

�
2 R and a measure of reachability,R

�
Cg

�
2 R+ we

can formulate an optimization objective in terms of solution
space elements as�

�
Cg

�
= Q(Cg) + �R (Cg). Here, we

assumed perfect reachability forR(Cg) = 0 and set0 >
� 2 R. The optimization problem is then given as

C �
g = argmax

Cp 2S
�

�
Cg

�
(1)

Concretely, we do not solve Eq. 1 directly but formulate
a hierarchy of increasingly approximated problem instances
as explained Sec. IV-C. Grasp synthesis is �nalized in
continuous coordinates by inverse kinematics for the selected
contactsC �

g 2 S as described in Sec. IV-D. If the resulting
grasp is obstructed or not reachable, we start a new search
with a different initialization.

III. F INGERTIP SPACE REPRESENTATION

In this section we explain �ngertip unit extraction from
arbitrary point clouds with normals using a simple �nger
model. We �rst provide a de�nition of �ngertip units in terms
of input data and elaborate on the �ngertip hierarchy which
is used in Sec. IV-C.

A. Extraction of Fingertip Units

In Sec. II-B we only state a qualitative de�nition of
�ngertip units as locations on the object that allows the
placement of a �ngertip. Observing an arbitrary point cloud
P =

�
(pi ; ni )

	
i with normal vector estimates, we need to

extract a �nite set of such locations by investigatingP while
taking a �nger model into account. For the purpose of this
work, we focus on Barrett hand and consider contacts where
the inside of the distal links rests on the object surface. The
�ngertip model describes a �at circular region located at the
center of the distal link's inner surface and has radiusr , as
shown in Fig. 3.

For a pointpi to support the placement of the �ngertip
orthogonal to its normalni , all neighboring points within
radius r need to support the �ngertip as well. This can be
formulated as a limit criterion on variance of point positions

Fig. 3. From left to right: Point cloud, �ngertip space (in blue),
and rejected points (in red). Partitioning of similar �ngertip unites
into 20 cells.Magni�ed: Red marks points rejected due to variance
criterion. Comparing to �nger size, it is obvious that the red
positions cannot stabilize contacts.

and normals of the point neighborhood,N r
pi

= f (pj ; nj ) 2
P j




 pi � pj




 < r g, and used to reject un�t points. Fingertip

space and units are now de�ned in terms of the following
�lter:

� =
�

(pi ; ni ) 2 P j Var
�

N r
pi

�
< �

�
(2)

A �ngertip unit is thus a position and a normal,� = ( p; n),
where the neighborhoodN r

p satis�es the statistical variance
criterion Var.

B. Hierarchy of Fingertip Space

In Sec. II-B we have augmented the �ngertip space with a
similarity-based graphG� and the hierarchy levels(G� ) i it
induces. To compute aG� , we employ agglomerative cluster
analysis where each �ngertip unit initially forms a singleton
cluster. Agglomerative Hierarchical Clustering (AHC) of the
set� with the distance measured� is a bottom up procedure
that results in a clustering tree by iteratively merging the two
most similar clusters. This dendrogram can be accessed to
obtain a partitioning of� into z 2 N clusters or cells, e.g.
� = H z

1 _[ H z
2 _[ : : : _[ H z

z . For a partitioning ofz0 > z cells
each of the cellsH z0

i is strictly contained in exactly one of
the cellsH z

j .
We exploit this property to construct the hierarchy in

G� by computing a sequence ofl partitions with j� j =
z0 > z 1 > � � � > z l = 1 number of cells. For each cell
H zi

j � � with i > 0, we create a representative �ngertip
unit � i;j 2 �� from the median position and the mean
normal of all contained �ngertips units. Parent-child edges
are introduced for each two �ngertips units� i;j and � i � 1;k

with i > 0 if the child's cell is contained in the parent's cell.

8 H zi � 1

k � H zi
j : (� i;j ; � i � 1;k ) 2 E �� (3)

Additionally we connect all siblings nodes and introduce
edges to all nodes who's parents are siblings. This process
is exempli�ed in Fig. 2.

Concretely, we are interested in grasp similarity for search
and require similar �ngertip units to be grouped together. The



admittedly crude �ngertip distance measure of Eq. 4 provides
plausible results in terms of positions and normals.

d� (� i ; � j ) =



 (pi � pj ) + � (ni � nj )




 (4)

The parameter� 2 R+ balances position and normal. Larger
� induces more parallel or �at geometry and small� results
in compactly shaped cells but allows more normal vector
variance. Furthermore, we need to specify the number of
levels l and the number of nodes per levelzi in order to
get cutoff values from AHC. For simplicity, we base the
number of nodes per level on an incrementation ration and
ml � 1. Note thatml = 1 and m0 = j� j. Fig. 3 shows20
cells of different size with� = 3 .

IV. GRASPSYNTHESIS

In Sec. II-C we have stated the discrete version of our
grasp synthesis as a combinatorial optimization problem.
This section serves to describe our choice of reachability
measureR and grasp quality functionQ for Eq. 1. We
also describe the optimization procedure using the multilevel
re�nement metaheuristic.

A. Grasp Stability Metric

All functions in Eq. 1 are de�ned on sets of �ngertip units
� i = ( pi ; ni ). It is therefore convenient to focus on quality
measures for point contacts as many approaches to robotic
grasping are based on force analysis and the concept of force-
closure [28], [29]. There, the forces exerted by the robot and
friction of the surfaces are considered. ForQ, we choose to
evaluate the force-closure property of a grasp with theL 1

grasp quality measureQ� reported in [11] that employs the
Coulomb friction model. The grasp qualityQ = Q� is a
function of all contact positions and normals, the center of
mass of the object and the friction coef�cient� 2 R+ . We
can thus directly refer to the �ngertip units for point contacts
pi 2 R3 and inward-pointing unit surface normalsni 2 R3.
A grasp is force-closed ifQ� is larger than zero.

B. Reachability Measure

For the optimization objective in Eq. 1 we require a non-
binary reachability measureR of a set of �ngertip units that
relates to values forJoint g andPoseg. However, computing
an approximate inverse kinematic solution and measuring the
residual error in each optimization step is computationally
infeasible. Instead, we consider an approximation of the
�ngertip reachability manifoldcM and assume a free-�oating
hand model. Feasible hand con�gurations are generated by
rejection sampling and their �ngertip positions and normals
are recorded in a af�ne invariant encoding. To this end,
we retain a vector,mĝ, of pairwise �ngertip distances and
normal differences from a sampled graspĝ and keep the
associatedJoint ĝ values. For a grasp hypothesisCg we can
calculate the encodingmg and access the nearest neighbor
in encoding spacemĝ 2 cM . If the manifold is sampled
suf�ciently, the differences betweenmg and mĝ can be
consider as the reachability residual

R(Cg) =



 mg � mĝ




 (5)

This reachability measure relies on the distances in an
encoding space and we are aware that better techniques
exists, e.g., density estimation as in [30] that takes into
account also object-level impedance control. However, our
R is used in a heuristic way to reduce the searched space for
Eq. 1 and to initialize hand con�gurationsJoint g := Joint ĝ

and has served suf�ciently for this purposes.

C. Multilevel Re�nement Optimization

As in our previous work [31], we apply the multilevel
re�nement metaheuristic [32] for a hierarchy of combi-
natorial optimization problems. The �ngertip space object
representation de�ned in Sec. II-B offers a multiresolution
view of the object and can be exploited for re�nement search.
We refer to the �ngertip hierarchy levels(G� ) i to form
increasingly approximated instances of the solution space.
This is achieved by de�ningSi =

Q n g

k=1

�
G� k

�
i as the

solution space on thei th re�nement level. On each level
i , a solutionC i

g is initialized by extending the solution of
the previous leveli + 1 and optimizing it, resulting with a
solutionC �

g = C0
g in the search spaceS0 = S.

In this context the individual optimization problems are
usually optimized using local optimization methods for con-
vex problems [33]. As argued in our previous work, [31]
we cannot expect convex objective manifolds for complex
objects. Furthermore, the result of hill climbing techniques
is heavily dependent on initialization in non-convex solution
spaces. Different algorithms [34], [35] have been proposed
to escape local minima. In this work, we adopt stochastic
hill climbing [36].

In this algorithm, the objective function is not directly used
to improve the current solution. Instead, the change between
two solutionsCg and Cg0 is conditioned on the probability
stated in Eq. (6).

Pr (Cg; Cg0) =
�

1 + exp
� (Cg) � � (Cg0)

�

� � 1

(6)

The search randomness is determined by� . Large values
make the steps completely random, whereas the algorithm
degenerates to hill climbing when� is very small.

Our basic optimization procedure is shown in Alg. 1.
The functionrand(0; 1) produces uniformly distributed real
numbers between0 and1. Children and neighbors of grasps
are created from the respective children and neighbors of
the constituting �ngertip units in the graphG� as de�ned in
Sec.II-B.

D. Grasp Realization

The optimization procedure described in Sec. IV-C results
in a grasp comprised of discrete �ngertip unitsC �

g . For this
grasp, the sampling-based reachability measure from Sec. IV-
B provides the joint con�gurationJoint ĝ of the closest
recorded grasp̂g in encoding space. The optimization proce-
dure described below employs a continuous optimization for
Joint g andPoseg in terms ofC �

g to close the gap between
discretization, sampling and applicable continuous solutions.
This is achieved by �rst approximately aligning the hand to



Algorithm 1 Multilevel re�nement with stochastic hill
climbing for grasp synthesis
Input: � , maxIter , G� , �
Output: graspg

1: for i = l � 1 to 0 do
2: if i = l � 1 then . Initialization
3: C i

g  random fromSi

4: else . Extension
5: C i

g = argmax
Cg child of C i +1

g

� (Cg)

6: end if
7: for 1 to maxIter do . Re�nement
8: Cg  some neighbor ofC i

g 2 S i

9: if Pr (C i
g; Cg) � rand(0; 1) then

10: C i
g  Cg

11: end if
12: end for
13: end for

the grasping pose with an af�ne transform betweenC �
g and

�ngertips of ĝ, and then locally optimizing simulated contact
positions.

The initial af�ne transform can be found by minimizing
the Euclidean error for the known correspondences between
C �

g and the �ngertips of ĝ. An example of initial hand
alignment is shown in Fig. 4. As can be seen in Fig. 4, not all
�ngers have an initial single surface contact. For this reason,
we �rst open the colliding �ngers using proportional joint
value increments and then close all �ngers until contact to
get simulated contact positionsC+

g . We then turn to gradient
decent to minimize the error between the positions ofC+

g
andC �

g for which we compute the gradient numerically.

Fig. 4. An example of initial alignment and grasp realization.Left to
right: Marker positions representC �

g . The initial joint values for the grasp
from cM . Hand alignment by af�ne transform. Final grasp after contact
optimization.

V. EXPERIMENTAL EVALUATION

In this section, we �rst provide implementation details and
then present the results of evaluation. The evaluations have
been conducted in OpenRave [24] on six objects :Stanford
Bunny[37], Plane[38] andWaschmittel[39], as well asCup,
SpoonandMilk Box scanned by ourself.

A. Implementation Details

As described in Sec. II,Fingertip Units are locations on
the object surface where �ngertip contacts are viable and
the Fingertip Spaceis a �nite set of Fingertip Units. If
two contacts have similar locations and orientations, they

would have similar contributions to the grasp stability [22].
Therefore, prior to �ngertip space extraction, we uniformly
subsampled the object point cloud to produce �ngertip unit
candidates. Concretely, the subsampling was done in the
scale of half of the �ngertip unit size on the point cloud.

For the reachability measureR(Cg) in the objective
function � (Cg), a set of feasible grasps were sampled and
encoded. For the sake of ef�ciency, we saved all the codes in
a kd-tree and consider the Euclidean distance between codes
as the reachability residual.

After Alg. 1 has synthesized a grasp hypothesis, we
discard the hypothesis and restart the algorithm if: a) grasp
hypothesis is unstable, or b) the reachability residual is too
large or c) it is not collision-free. The collision is checked
by �rstly aligning the con�gured robot hand to the grasping
pose by the af�ne transform described in Sec. IV, and then
in the simulation check whether the hand has collisions at
positions other than the �ngertips.

In all the experiments shown below, we usel = 4 layers,
ml � 1 = 20 and � = 1 for constructing the hierarchy of the
�ngertip space. We set� = 0 :4 to weight betweenQ(Cg)
and R(Cg) in � (Cg), and setmaxIter = 100 for grasp
re�nement.

B. Fingertip Space Extraction and System Evaluation

Different de�nitions of �ngertip units result in different
�ngertip spaces. As described in Sec. III, a �ngertip unit
in this work is de�ned as a circular area at the center of
the distal link and has radiusr . In this section, we show two
different de�nitions of �ngertip units of the Barrett hand and
their corresponding �ngertip spaces, and then we evaluate the
performance of the system using these two �ngertip spaces
respectively.

In Fig. 5, the �ngertip unit is located at the center of the
distal link in both rows expressing the representative position
of a �ngertip. In the upper row, the radius of the circular
area is the distance between the center and the long edge of
the distal link, denoted asr 1, whereas in the lower row, the
radius is the distance between the center and the short edge
of the distal link, denoted asr 2. As we can see from their
corresponding �ngertip space,r 2 is indeed a more restricted
condition that requires a larger area on the object to �t the
�ngertip, and in the meanwhile it results in a much sparser
�ngertip space.

Fig. 5. Fingertip Space with different �ngertip unit sizes.

Fig. 6 records the statistics of our system evaluation.
Recall that the initialization of the system is random in this
work and there is also randomness in the stochastic hill



climbing procedure, the results generated by system can be
different between each single run of the system. Therefore,
we ran it 100 times on each of the six test objects using
�ngertip unit sizes of bothr 1 and r 2 and investigate the
averaged performance. We can see that the result for the
plane model is much worse than others. This is due to the
fact that the plane has many parts that are highly concave and
that the Barrett hand is coupled with only4 DoFs, the grasp
realization is therefore much more dif�cult. For the same
reason, it is much easier to expect collisions between the
robot hand and the plane surface and more search iterations
are therefore required. However, it is intuitive that if a more
dexterous hand is employed, it is easier for us to deal with
more complex object shapes. The averaged time per iteration
is related to the size of extracted �ngertip space� , which
is shown in the parenthesis in the �rst column: the larger
�ngertip space an object has, the more time it takes to search
for a precision grasp.

It is worth noting that the performance of the system is
generally better when �ngertip radius was set tor 2. Because
given the same �ngertip embodiment, a larger �ngertip unit
makes it safer to stabilize a contact. Fig. 7 displays some
example stable grasps synthesized by the system.

Object(radius: #Units) Stable(%) Rounds Time/Round
Bunny(r 1: 3276) 98 1.73 13.08s
Bunny(r 2: 293) 100 1.64 6.03s
Plane(r 1: 579) 75 3.16 8.35s
Plane(r 2: 96) 89 3.98 5.97s

Waschmittel(r 1: 4236) 95 1.51 17.25s
Waschmittel(r 2: 644) 95 1.22 9.13s

Cup(r 1: 3068) 98 1.42 13.00s
Cup(r 2: 730) 97 1.51 8.19s
Spoon(r 1: 91) 88 1.83 8.22s
Spoon(r 2: 49) 91 1.91 3.31s

Milk Box(r 1: 3936) 100 2.69 13.68s
Milk Box(r 2: 842) 100 3.73 9.98s

Fig. 6. Statistics of algorithm evaluation.Stable(%): The percentage
of stable grasps after the grasps were executed.Rounds: The
averaged rounds of Alg. 1 to successfully output a good grasp, note
that Alg. 1 is restarted if the �nal check is not satis�ed.Time/Round:
The averaged time in seconds that one round of the algorithm takes.

C. Positioning Error Tolerance of Fingertip Space

In Fig. 8, grasps are shown with their realized contacts
(green) and synthesized contacts (red). The realized grasps
are usually a bit different from what was synthesized, both
in contact positions and normals. This is due to the fact
that the reachability measure employed in Sec. IV is an
approximation of the real reachability manifold and that the
Barrett hand is not dexterous enough to always suf�ciently
deal with non-zero reachability residual. In this section, we
examine whether the synthesized grasps will remain stable
if the �nal executions of them have positioning errors with
respect to synthesized contacts.

The experiments have been conducted onStanford Bunny,
Plane and Waschmittelmodels by assuming that the posi-
tioning errors are within one and two �ngertip unit sizes,
given the fact that the positioning errors recorded in our

experiments were smaller than two �ngertip unit size. Sim-
ilarly to the concept of Independent Contact Regions [40],
we consider a grasp as tolerant to positioning errors if all
contacts can be freely positioned within a certain range
without losing stability. In this experiment, 100 grasps have
been synthesized on all three objects, and contacts within
the error limit were sampled and the percentages of sampled
nearby stable grasps were recorded for each grasp. Test
results are shown in Fig. 9 as the percentages of the nearby
stable grasps with standard deviation on the bar plot.
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Fig. 9. Positioning error tolerance test results: percentages of stable nearby
grasps given positioning errors within one and two �ngertip unit sizes.

As can be seen from the results, neighbors of synthesized
stable grasps remain stable with high probabilities. This is
an evidence for the fact that synthesized grasps are tolerant
to small positioning errors and that our reachability measure
retains the relevant information. This can be explained by the
�ngertip space extraction: since �ngertip units are positions
where the object surface is smooth, small positioning errors
will not heavily in�uence contact positions and normals, and
the grasp stability is therefore also not heavily in�uenced,
which can be referred back to our motivation in Sec. I.

D. Precision Grasp Synthesis with Noisy Data

In this section, we examine the performance of our algo-
rithm considering noisy sensory data. As shown in Fig. 10,
we scanned theStanford Bunny, Planeand Waschmittel
models using a virtual 3D sensor while adding Gaussian
noise in the viewing direction. For the extraction of �ngertip
units, the �ngertip size was set tor 2. As we can see, the
�ngertip space becomes different comparing to noise-free
objects. However, it is worth to note that, although the objects
are noisy, the extracted �ngertip units are still retaining the
property of �atness and smoothness.

Fig. 10. Noisy objects used in experiments and their corresponding
�ngertip space.

Fig. 11 records the statistics of 100 runs of our approach.
Grasps were synthesized using noisy data and the �nal



Fig. 7. Example precision grasps synthesized by the algorithm.

Fig. 8. Positioning errors in grasp realization.

grasp qualities are computed after the synthesized grasps
have been executed on the perfect objects. The result shows
that the percentage of stable grasps have been decreased
in comparison to the noise-free experiments, however, the
system can still synthesize stable precision grasps.

Object(#Units) Stable(%) Rounds Time/Round
Bunny(122) 92 2.12 7.63s
Plane(111) 83 4.16 7.24s

Waschmittel(582) 90 2.05 9.75s

Fig. 11. Statistics of algorithm evaluation with noise.Stable(%):
The percentage of stable grasps after the grasps were executed.
Rounds: The averaged rounds of Alg. 1 to successfully output a
good grasp, note that Alg. 1 is restarted if the �nal check is not
satis�ed.Time/Round: The averaged time in seconds that one round
of the algorithm takes.

E. Grasp Synthesis with Partially Observed Data

It is dif�cult to observe complete point clouds of target
objects in real applications. In this section, we simulate
partial views of objects by setting locations of a virtual
camera, and then we show example stable grasps synthesized
by the system, see Fig. 12.

Fig. 12. Upper: Fingertip space of the partially observed objects.
Lower: Grasps synthesized on partially observed objects. Unob-
served parts on the object are shown in transparency.

As shown in the examples, grasps can still be successfully
synthesized and the contacts are only synthesized for visible
positions. This is because the �ngertip space extraction and

the hierarchy construction operate directly on the observed
point cloud and does not require the object to be completely
observed. This implies another advantage of the proposed
object representation that the system is able to synthesize
precision grasps as long as the observed parts of the object
are graspable. In the real applications, if no successful grasps
can be synthesized by the system from a single view of the
object, the robot can move to a different position to �nd
graspable parts.

F. An Example of Grasp Synthesis and Realization

In this section, we present an example of grasp optimiza-
tion and execution.

Multilevel Grasp Optimization

As the re�nement procedure in Alg. 1 aims at improving
the objective function� (Cg), it searches for largerQ(Cg)
and smallerR(Cg) values.

Fig. 13. Left: Records of multilevel grasp optimization.Right: Records of
contact positions optimization,� =






 C+
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 . The horizontal axes are

number of iterations in both �gures.

Fig. 13 displays one example of� (Cg), Q(Cg) andR(Cg)
curves of Alg. 1 applied on the Bunny model. We can see
that the � (Cg) value is generally increasing with a few
decreases due to the randomness in the Alg. 1, and that
the Q(Cg) value is also generally increasing. However, the
R(Cg) value is decreasing but sometimes increasing, this is
because the search procedure was attempting many different
joint con�gurations to �t a grasp while balancing between
other objectives. Next, we apply the contacts optimization to
realized the grasp with synthesized contacts.



Contact Positions Optimization

As shown in Fig. 13,� value is generally decreasing
during the gradient descent but is occasionally overshooting.
The overshots are due to the joint space of robot hand and
the object surface is very complicated and has many local
optima. After the contact positions optimization is done, the
�nal stable precision grasp was achieved as shown on the
right. It is worth to mention that as the �ngertips' positions
after af�ne transform was already very close to the desired
position, the gradient descent did not need many steps to
converge.

VI. CONCLUSION

In this paper, we have proposed a concept ofFingertip
Space, which is an integrated representation of both object
local geometry and �ngertip geometry, and shown its use in
precision grasp synthesis. By building a hierarchical repre-
sentation of the �ngertip space, we have enabled multilevel
re�nement for precision grasp synthesis. Our experimental
evaluation with a Barrett hand has shown that the �ngertip
space and its hierarchy is a viable and ef�cient representa-
tion for precision grasp synthesis, and that the multilevel
re�nement facilitates the search procedure. We have also
evaluated the positioning errors tolerance of our system, as
well as demonstrated examples of our system working with
noisy and incomplete data. In the future, we are planning to
implement our system on a real robot and additionally make
the modular system more compact and �exible for different
robot embodiments and search algorithms to be plugged in.
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